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Introduction



About this tutorial

Main goal: Fully understand support vector machines (and
important extensions) with a modicum of mathematics
knowledge.

e This tutorial is both modest (it does not invent anything new)
and ambitious (support vector machines are generally
considered mathematically quite difficult to grasp).

e Tutorial approach:

learning problem = main idea of the SVM solution =2
geometrical interpretation 2 math/theory -
basic algorithms = extensions > case studies.



Data-analysis problems of interest

1. Build computational classification models (or

“classifiers”) that assign patients/samples into two or

more classes.

- Classifiers can be used for diagnosis, outcome prediction, and

other classification tasks.

- E.g., build a decision-support system to diagnose primary and
metastatic cancers from gene expression profiles of the patients:

P -

Patient Biopsy Gene expression
profile

Classifier
model
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Data-analysis problems of interest

2. Build computational regression models to predict values
of some continuous response variable or outcome.

- Regression models can be used to predict survival, length of stay
in the hospital, [aboratory test values, etc.

- E.g., build a decision-support system to predict optimal dosage
of the drug to be administered to the patient. This dosage is
determined by the values of patient biomarkers, and clinical and

demographics data:

——p [1]22[3p23[2]3]|92]2|1]|8] ——p

=
. Biomarkers,
Patient clinical and

demographics data

Regression
model

Optimal
dosage is 5
IU/Kg/week




Data-analysis problems of interest

Out of all measured variables in the dataset, select the
smallest subset of variables that is necessary for the
most accurate prediction (classification or regression) of
some variable of interest (e.g., phenotypic response
variable).
- E.g., find the most compact panel of breast cancer biomarkers
from microarray gene expression data for 20,000 genes:

Breast
cancer
tissues

—

Normal
tissues

—




Data-analysis problems of interest

4. Build a computational model to identify novel or outlier
patients/samples.

- Such models can be used to discover deviations in sample
handling protocol when doing quality control of assays, etc.

- E.g., build a decision-support system to identify aliens.




Data-analysis problems of interest

5. Group patients/samples into several
clusters based on their similarity.

- These methods can be used to discovery  custers1 RIS

disease sub-types and for other tasks.

- E.g., consider clustering of brain tumor Cluster#2 g ' : |
patients into 4 clusters based on their gene ‘
expression profiles. All patients have the  jycterss il
same pathological sub-type of the disease, '
and clustering discovers new disease | X
subtypes that happen to have different  ciusterss [ERSSERENGR. -
characteristics in terms of patient survival i s
and time to recurrence after treatment.




Basic principles of classification

e Want to classify objects as boats and houses.
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Basic principles of classification

» All objects before the coast line are boats and all objects after the
coast line are houses.
e Coast line serves as a decision surface that separates two classes.
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Basic principles of classification

These boats will be misclassified as houses
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Basic principles of classification

Longitude
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* The methods that build classification models (i.e., “classification algorithms”)

operate very similarly to the previous example.
* First all objects are represented geometrically.
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Basic principles of classification

Longitude
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Then the algorithm seeks to find a decision
surface that separates classes of objects
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Basic principles of classification

Longitude
>

These objects are classified as houses

?/?/ AW

? ? ?

N

These objects are classified as boats

Latitude

Unseen (new) objects are classified as “boats”
if they fall below the decision surface and as
“houses” if the fall above it



The Support Vector Machine (SVM)
approach

Support vector machines (SVMs) is a binary classification
algorithm that offers a solution to problem #1.

Extensions of the basic SVM algorithm can be applied to
solve problems #1-#5.

SVMs are important because of (a) theoretical reasons:

- Robust to very large number of variables and small samples
- Can learn both simple and highly complex classification models
- Employ sophisticated mathematical principles to avoid overfitting

and (b) superior empirical results.



Main ideas of SVMs

Gene Y
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Gene X

e Consider example dataset described by 2 genes, gene X and gene Y
e Represent patients geometrically (by “vectors”)
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Main ideas of SVMs

GeneY

Normal patients Cancer patients

Gene X

e Find a linear decision surface (“hyperplane”) that can separate
patient classes and has the largest distance (i.e., largest “gap” or
“margin”) between border-line patients (i.e., “support vectors”);
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Main ideas of SVMs
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* |f such linear decision surface does not exist, the data is mapped
into a much higher dimensional space (“feature space”) where the
separating decision surface is found;

 The feature space is constructed via very clever mathematical
projection (“kernel trick”).
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History of SYMs and usage in the literature

e Support vector machine classifiers have a long history of
development starting from the 1960’s.

* The most important milestone for development of modern SVMs
is the 1992 paper by Boser, Guyon, and Vapnik (“A training
algorithm for optimal margin classifiers”)
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Necessary mathematical concepts



How to represent samples geometrically?
Vectors in n-dimensional space (R")

e Assume that a sample/patient is described by n characteristics
(“features” or “variables”)

* Representation: Every sample/patient is a vector in R" with

tail at point with O coordinates and arrow-head at point with
the feature values.

 Example: Consider a patient described by 2 features:
Systolic BP = 110 and Age = 29.
This patient can be represented as a vector in R?:

Age

00 /

(110, 29)

Systolic BP



How to represent samples geometrically?
Vectors in n-dimensional space (R")
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4 300 180 45 (0,0,0) (300, 180, 45)




How to represent samples geometrically?
Vectors in n-dimensional space (R")
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Since we assume that the tail of each vector is at point with O
coordinates, we will also depict vectors as points (where the

arrow-head is pointing).



Purpose of vector representation

e Having represented each sample/patient as a vector allows
now to geometrically represent the decision surface that
separates two groups of samples/patients.

A decision surface in R? A decision surface in R*
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* In order to define the decision surface, we need to introduce
some basic math elements...
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Basic operation on vectors in R"

1. Multiplication by a scalar
Consider a vector a=(a,,a,,...,8,) and a scalar C

Define: ca =(ca,,ca,,...,ca,)

When you multiply a vector by a scalar, you “stretch” it in the
same or opposite direction depending on whether the scalar is

positive or negative.

a=(2) a=(12) ]
c=2 ) ca c=-1 2
ca=(2,4) ca=(-1-2) :
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Basic operation on vectors in R"

2. Addition

Consider vectors d=(a,,a,,...,a_ ) and b = (b,,b,,....,b,)
Define: a+b =(a, +b,,a, +b,,...,a +b,)

= \S] w N

/a 7
/
a’ /

Recall addition of forces in
classical mechanics.



Basic operation on vectors in R"

3. Subtraction

Consider vectors d=(a,,a,,...,a_ ) and b = (b,,b,,....,b,)
Define: a—b =(a,-b,,a,-b,,....a, —b)

= N w S

What vector do we
need to add tob to
getd?l.e., similar to
subtraction of real
numbers.



Basic operation on vectors in R"

4. Euclidian length or L2-norm

Consider a vector a =(a,,a,,...,a,)

Define the L2-norm: HéHz = \/af +322 +...+a§

We often denote the L2-norm without subscript, i.e. HéH

a=(12) 3
la], =v5=~2.24"

3 Length of this
vector is = 2.24

0

1 2 3 4

L2-norm is a typical way to

measure length of a vector;
other methods to measure

length also exist.



Basic operation on vectors in R"

5. Dot product

Consider vectors d=(a,,a,,...,a,) andb = (b,,b,,...,b,)

Define dot product: 5.b = ab +ab,+..+ab = Z:aibi
=1

The law of cosines says that & - b =||a I, || b ||, cosé@ where
g is the angle between a and b. Therefore, when the vectors

are perpendicular a-b =0.

a=12) i=(02) °
b=(30) |, b=(30) |
a 1§ A a L

b =3 b
N =0y

of 1 2 73 4 T >3 3




Basic operation on vectors in R"

5. Dot product (continued)

a-b=ab, +ab,+..+a,b, => ab
=1

* Property: 8-d=2a,a +a,3, +..+a,a, = d|;

e In the classical regression equation Y =W-X+Db
the response variable y is just a dot product of the
vector representing patient characteristics (X ) and
the regression weights vector (W) which is common

across all patients plus an offset b.



Hyperplanes as decision surfaces

* A hyperplane is a linear decision surface that splits the space
into two parts;

* |t is obvious that a hyperplane is a binary classifier.

A hyperplane in R?is a line A hyperplane in R3 is a plane
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A hyperplane in R"is an n-1 dimensional subspace



Equation of a hyperplane

First we show with show the definition of
hyperplane by an interactive demonstration.

Click here for demo to begin

or go to http://www.dsl-lab.org/svm tutorial/planedemo.html

Source: http://www.math.umn.edu/~nykamp/
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Equation of a hyperplane

Consider the case of R3;

X —X An equation of a hyperplane is defined
\ N : / Po by a point (P,) and a perpendicular
X

vector to the plane (W) at that point.

Define vectors: )?0 = OPO and X = (T:S , Where P is an arbitrary point on a hyperplane.

A condition for P to be on the plane is that the vector X — X, is perpendicular to W :
W-(X—=X,)=0 or
W-X—W-X,=0 define b=-W-X,
|W-X+b=0 |

The above equations also hold for R" when n>3.



Equation of a hyperplane

Example
N = (4’_1’6) + direction

P, =(01-7) \ NN W-%+50=0
b=—Vi-%, =—(0—1-42) = 43 <

= (4,-16)-X+43=0
= (4,-1,6)- (X1 X2, X(g)) +43=0
= 4X ) — X5 +6X3 +43=0

WX +43=0 \ W-X+43=0
\\

W-)‘(’+10:O

- direction

What happens if the b coefficient changes?
The hyperplane moves along the direction of W.
We obtain “parallel hyperplanes”.

Distance between two parallel hyperplanes W- X + b 0 andW-X + b =0
is equal to D =|b, —b,|/|[W|.
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(Derivation of the distance between two
parallel hyperplanes)

\//\WK b o .t

o D = [t = t]|w|

(W-%, +b,) —b, +t|W +b, =0
—b, + ¢ +b, =0
t= (b, —b,) /||

| = D =[] =[b ~b,| /] |




Recap

We know...
* How to represent patients (as “vectors”)
 How to define a linear decision surface (“hyperplane”)

We need to know...
* How to efficiently compute the hyperplane that separates
two classes with the largest “gap”?

Gene Y %
** * =» Need to introduce basics
* ° P . . .
*& *;& el e, of relevant optimization
o o
* * P Yo I theory
// ,, ! . .

\ Y J 7o Y J

Normal patients Cancer patients

Gene X
37



Basics of optimization:
Convex functions

e A function is called convex if the function lies below the
straight line segment connecting two points, for any two
points in the interval.

e Property: Any local minimum is a global minimum!

<«—Local minimum

[LAd
us®
------
Py
as
Py

<«—Global minimum

<«—Global minimum

Convex function Non-convex function



Basics of optimization:
Quadratic programming (QP)

e Quadratic programming (QP) is a special
optimization problem: the function to optimize
(“objective”) is quadratic, subject to linear
constraints.

* Convex QP problems have convex objective
functions.

* These problems can be solved easily and efficiently
by greedy algorithms (because every local
minimum is a global minimum).



Basics of optimization:
Example QP problem

Consider X = (X,X,)
1. .
Minimize §||x||§ subject to X, +X,—1>0

\ ) \ )
I I

quadratic linear
objective constraints

This is QP problem, and it is a convex QP as we will see later
We can rewrite it as:

Minimize E(X12+X22) subjectto x, +x,—1>0
2

[ | J ‘ '
! Y

quadratic linear
objective constraints

40



Basics of optimization:
Example QP problem

X, +X,-1>0

gy « 4y 1
o *':,jf{,;{fg,gg?w : )
’, 7]

T
P
{n '.*:'ll, .f!;?luj

The solution is X,=1/2 and x,=1/2.

41



Congratulations! You have mastered
all math elements needed to
understand support vector machines.

Now, let us strengthen your
knowledge by a quiz ©



1) Consider a hyperplane shown
with white. It is defined by
equation: W-X+10=0
Which of the three other
hyperplanes can be defined by
equation: W-X+3=0 7

- Orange
- Green

2) What is the dot produEt between
vectorsd = (3,3) andp = (1-1)?

43



3) What is the dot product between
vectorsd = (3,3) and b = (1,0)?

4) What is the length of a vector
a =(2,0) and what is the length of
all other red vectors in the figure?

UlZ

Q|

44



Quiz

5) Which of the four functions is/are convex?

45



Support vector machines for binary
classification: classical formulation



Case |: Linearly separable data;
“Hard-margin” linear SVM

| » X\, %,y X €R
Given training data:
Yir Vourees Yy €{-1+1}

e \Want to find a classifier

/N& (hyperplane) to separate
i negative instances from the
* positive ones.

e An infinite number of such
hyperplanes exist.

e SVMs finds the hyperplane that
maximizes the gap between
data points on the boundaries
(so-called “support vectors”).

* |f the points on the boundaries
are not informative (e.g., due to
noise), SVMs will not do well.

J

Negative instances (y=-1) Positive instances (y=+1)

47



Statement of linear SVM classifier

The gap is distance between
parallel hyperplanes:

VY'§+b =1 and
W-X+b=+1
Or equivalently:

W-X+(b+1)=0

W-X+(b-1)=0
We know that
Negative _ L _ D:‘bl_bz‘/HWH
egative instances (y=-1) Positive instances (y=+1)
Therefore:
D =2/

Since we want to maximize the gap,

we need to minimize HWH
. . . . — 2 1 1 H i i i
or equlvalently‘mlnlmlze %HWH ‘ ( > I convenient for taking derivative later on)

48




Statement of linear SVM classifier

In addition we need to
impose constraints that all
instances are correctly
classified. In our case:
W-X +b<-1if y,=-1
W-X +b>+1 if Y, =+1

Equivalently:
| y;i(W-X +b)>1]

Negative instances (y=-1) Positive instances (y=+1)

In summary:

2 L .
Want to minimize %HWH subjectto Y. (W-X. +b)>1 fori=1,...,N
Then given a new instance X, the classifier is f (X) = sign(w- X + b)

49



SVM optimization problem:
Primal formulation

Minimize subject to [}/i(W-Yi+b)—1ZOJ fori=1,...,N

Objective function Constraints

e This is called “primal formulation of linear SVMs”.

e |t is a convex quadratic programming (QP)
optimization problem with n variables (w, i = 1,...,n),
where n is the number of features in the dataset.




SVM optimization problem:
Dual formulation

* The previous problem can be recast in the so-called “dual
form” giving rise to “dual formulation of linear SVMs”.

e [t is also a convex quadratic programming problem but with
N variables (o, ,i = 1,...,,N), where N is the number of
samples.

N

N o N
Maximize[Zai ~% 2 aa; VY% 'Xj]subject to Exi >0 and Y a,Y, =Cﬂ.
i i=1

i=1 i, j=1

Objective function Constraints

N

Then the w-vector is defined in terms of a,; W = Zai y. X
N i

And the solution becomes: f(X) = sign(z a. Y. X - X+Db)
i-1



SVM optimization problem:
Benefits of using dual formulation

1) No need to access original data, need to access only dot
products.

N N
Objective function: Zai —%Z“iajyiyj
i=1

i) j=1

N
Solution: f()‘(’):sign(z(xiyi b)
=1

2) Number of free parameters is bounded by the number
of support vectors and not by the number of variables
(beneficial for high-dimensional problems).

E.g., if a microarray dataset contains 20,000 genes and 100
patients, then need to find only up to 100 parameters!



(Derivation of dual formulation)

Minimize subject to [yi (W-X. +b)—-1> O] fori=1,...,N
i1

Objective function Constraints

Apply the method of Lagrange multipliers.
N
Define Lagrangian A W b, a ZW Z“ozi(yi (W- X +b)—1)

a vector with n elements

a vector with N elements

We need to minimize this Lagrangian with respect to w,b and simultaneously
require that the derivative with respect to @ vanishes, all subject to the
constraints that «; > 0.



(Derivation of dual formulation)

If we set the derivatives with respect to W,b to 0, we obtain:

oA, (W, b, @) N
) v. =0
= :;a.y.
) = N
aAP%b’“) 0= wzéaiyi%

We substitute the above into the equation for AP(W, b, &) and obtain “dual
formulation of linear SVMs”

N N
AD(O_Z): Zai % Zaiajyiyj)_(i X
i=1 i, j=1
We seek to maximize the above Lagrangian with respect to &, subject to the

N
constraints that ¢, >0 and Zai y. =0.
i=1



Case 2: Not linearly separable data;
“Soft-margin” linear SVM

What if the data is not linearly
separable? E.g., there are
outliers or noisy measurements,
or the data is slightly non-linear.

Want to handle this case without changing
the family of decision functions.

Approach:

0

fo'"
®o
®o

I o
N

p
B =)
®o
®o OO0

®o

T
l

Assign a “slack variable” to each instance & > 0, which can be thought of distance from
the separating hyperplane if an instance is misclassified and 0 otherwise.

N
Want to minimize %HVT/HZ +CZ & subjectto Y, (W- X, +b)>1—-¢& fori=1,...,N

=1 . N
Then given a new instance X, the classifier is f (X) = sign(w- X +b)
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Two formulations of soft-margin
linear SVM

Primal formulation:
n N
MinimizeEZWi2 + CZ gﬂsubject to [yi (W-X. +b) >1- (f] fori=1,...,N
=1 =1
Objective function Constraints
Dual formulation:
n N N
Minimize Zai — Zaiajyiyj)_('i +X; | subject to |0<«; <C and Z:wiyi =0
i—1 i j=1 i-1
Objective function Constraints

forir=1,...N.
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Parameter C in soft-margin SVM

Minimize ZHWH E§ subjectto Y. (W-X. +b) >1-& fori=1,..., N

e When Cis very large, the soft-
margin SVM is equivalent to
hard-margin SVM;

e When Cis very small, we
admit misclassifications in the
training data at the expense of

- having w-vector with small

C=100

norm;

e C has to be selected for the
distribution at hand as it will
be discussed later in this
tutorial.

57
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Case 3: Not linearly separable data;
Kernel trick

A O O
O
O Tumor o Tumor | —m-
OOOO Em g ¥ O i
m " "
s o m'E gm kernel
O | H B O
Co A mmm o _—
O OO | = - I. O
L O
- O o n c© o @
o 8 % © 5
o o O Normal
°5 o 0O
O
» Genel
Data is not linearly separable Data is linearly separable in the
in the input space feature space obtained by a kernel

®:R"Y > H



Kernel trick

Original data X (in input space) Data in a higher dimensional feature space CD(T()
f (x) = sign(W- X +b) f (x) = sign(W- ®(X) +b)

N N
W:ZaiYiXi V_V:Zaiyiq)()_(i)

i=1 i=1

() = sign(Y. &, Y, 0 (%) 0() +b)

f(x) = sign(ZN: a.y. K (% ,X) +b)

Therefore, we do not need to know @ explicitly, we just need to
define function K(:, :): RN x RN 5 R,

Not every function RN x RN = R can be a valid kernel; it has to satisfy so-called
Mercer conditions. Otherwise, the underlying quadratic program may not be solvable.
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Popular kernels

A kernel is a dot product in some feature space:
K(Xiiij) — q)(ii)'q)()?j)

Examples:

K (X

,Xj) =X - Xi

%)) =exp(—7]% - %)
%;) = exp(—7|% — %)
X)) =(p+X-X;)°

%) =(p+% %) exp(—1]% — %, )
,X;) = tanh(kx; - X; — 9)

Linear kernel
Gaussian kernel
Exponential kernel

Polynomial kernel

Hybrid kernel
Sigmoidal



Understanding the Gaussian kernel

Consider Gaussian kernel: K (X, )?j) = eXp(—Q/HX - )_{j HZ)

Geometrically, this is a “bump” or “cavity” centered at the
training data point )?j .

@ % » *

* * + @

. 9 llbumpn
* > “cavity”

*» * 00000 » »

The resulting
mapping function
is a combination
of bumps and
cavities.



Understanding the Gaussian kernel

Several more views of the
data is mapped to the

feature space by Gaussian

kernel



Understanding the Gaussian kernel

Linear hyperplane
that separates two
classes
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Understanding the polynomial kernel

Consider polynomial kernel: K (X, )?j) =(1+X -)#(j)3

Assume that we are dealing with 2-dimensional data
(i.e., in R?%). Where will this kernel map the data?

2-dimensional space

X X

(1) (2)

kernel

A
10-dimensional space

2 2 3 3 2 2
L Xy X Xp X2 XoXo Xo Xo *oXo XoXe



Example of benefits of using a kernel

X2)

)_(4 )_(3
* * X1

U2 52 2 -2
= XoZo +2X0Zo X2 2oy + X2)le) =

(

\

e Datais not linearly separable

in the input space (R?).

e Apply kernel K(X,7) = (X-7)°

to map data to a higher

dimensional space (3-

dimensional) where it is
linearly separable.

2
X Z 2
= = = =\2 1) 1) _ _
K(X2)=(x-2)*=|| @ | =[xy Z0) + Xy 2| =
X2 ) \ @

2
X

\/Ex(l) X2)
2

X(2)

\

(

2

Zay

' \/Ez(l)z(z)
2

Z2)

J

D(X)-D(2)



Example of benefits of using a kernel

Therefore, the explicit mapping is ®(X) = ﬁx(l)x(z)
2

X2)

[ )

2
X

. X
2
X2)
kernel o %%
X, - >
¥ X \ \ 2
), e X2,

\/Ex(l) X(2)
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Comparison with methods from classical

statistics & regression

* Need > 5 samples for each parameter of the regression
model to be estimated:

Number of Polynomial Number of Required
variables degree parameters sample
2 3 10 50

10 3
10 5
100 3
100 5

286

3,003
176,851
96,560,646

1,430
15,015
884,255
482,803,230

 SVMs do not have such requirement & often require
much less sample than the number of variables, even
when a high-degree polynomial kernel is used.
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Basic principles of statistical
machine learning



Generalization and overfitting

* Generalization: A classifier or a regression algorithm
learns to correctly predict output from given inputs
not only in previously seen samples but also in
previously unseen samples.

e Overfitting: A classifier or a regression algorithm
learns to correctly predict output from given inputs
in previously seen samples but fails to do so in
previously unseen samples.

e Overfitting = Poor generalization.



Example of overfitting and generalization

There is a linear relationship between predictor and outcome (plus some Gaussian noise).

.
R
.
-

Outcome of
InterestY

Outcome of
Interest Y

.
.
.
.*

.
.
o*

s

.
.
.*

Algorithm 1

@ Training Data
O Test Data

Predictor X Predictor X

e Algorithm 1 learned non-reproducible peculiarities of the specific sample
available for learning but did not learn the general characteristics of the function
that generated the data. Thus, it is overfitted and has poor generalization.

e Algorithm 2 learned general characteristics of the function that produced the
data. Thus, it generalizes.



“Loss + penalty’” paradigm for learning to
avoid overfitting and ensure generalization

e Many statistical learning algorithms (including SVMs)
search for a decision function by solving the following
optimization problem:

Minimize (Loss + A Penalty)

* Loss measures error of fitting the data
* Penalty penalizes complexity of the learned function
* A is regularization parameter that balances Loss and Penalty



SVMs in “loss + penalty” form

SVMs build the following classifiers: f (X) = sign(w- X +b)

Consider soft-margin linear SVM formulation:

Findw and b that N

Minimize %HW“Z +C21:§i subjectto y,(W-X. +b)>1-¢& fori1=1,...,N

This can also be stated as:

Findw andNb that

Minimize > [1-, f (%)1, +A|W];
i=1
Loss Penalty
(“hinge loss”)

(in fact, one can show that A = 1/(20C)).



Meaning of SYM loss function

N
Consider loss function: >_[1-Y; f (X)1.
i=1

* Recall that [...], indicates the positive part
* For a given sample/patient i, the loss is non-zero if 1-y. f(X)>0
* In other words, v, f(X) <1
e Since Y, ={-1+1}, this means that the loss is non-zero if
f(X)<1fory,=+1
f(X.)>-1 fory=-1
e |n other words, the loss is non-zero if

W-X +b <1 fory;=+1
W-X. +b>-1 fory=-1



Meaning of SYM loss function

e If the instance is negative,
it is penalized only in
regions 2,3,4

e If the instance is positive,
it is penalized only in
regions 1,2,3

Negative instances (y=-1) Positive instances (y=+1)
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Flexibility of “loss + penalty” framework

Minimize (Loss + A Penalty)

Loss function Penalty function | Resulting algorithm
N
Hinge loss: 2 [1=y,f ()], A SVMs
i=1
Mean squared error: 2
ZN:(yi - £(X))* Al Ridge regression
i=1
Mean squared error:
N -
Dy - f (%)) Al Lasso
i=1
Mean squared error:
— =112 .
i(yi — (X)) Ao\, + 2, || Elastic net
i=1

N
Hinge loss: Y [1-y, f (%), A, 1-norm SVM
i=1




Part 2

e Model selection for SVMs

e Extensions to the basic SVM model:
1. SVMs for multicategory data
Support vector regression
Novelty detection with SVM-based methods
Support vector clustering
SVM-based variable selection

Computing posterior class probabilities for SVM
classifiers

S e



Model selection for SVMs



Need for model selection for SVMs

Normal
Normal
» Genel » Genel
* It isimpossible to find a linear SVM classifier * We should not apply a non-linear SVM
that separates tumors from normals! classifier while we can perfectly solve
* Need a non-linear SVM classifier, e.g. SVM this problem using a linear SVM
with polynomial kernel of degree 2 solves classifier!

this problem without errors.
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A data-driven approach for
model selection for SVMs

* Do not know a priori what type of SVM kernel and what kernel
parameter(s) to use for a given dataset?

* Need to examine various combinations of parameters, e.g.
consider searching the following grid:

Polynomial degree d

0.1,1) | (1,1) | (10,1) | (100, 1) | (1000, 1)

(0.1, 2) (1, 2) (10, 2) (100, 2) | (1000, 2)
Parameter

C 0.1,3) | (1,3) | (10,3) | (100,3) | (1000, 3)

(0.1, 4) (1, 4) (10, 4) (100, 4) | (1000, 4)

(0.1,5) | (1,5) | (10,5) | (100,5) | (1000, 5)

* How to search this grid while producing an unbiased estimate
of classification performance?



Nested cross-validation

Recall the main idea of cross-validation:

data

—

train

train

train

What combination of SVM
parameters to apply on
training data?

valid train

train ‘

train valid

Perform “grid search” using another nested
loop of cross-validation.
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Example of nested cross-validation

Consider that we use 3-fold cross-validation and we want to
optimize parameter C that takes values “1” and “2”.

( Outer Loop
p1 — .
- Training | Testing C |Accuracy Awerage
b set set Accuracy
o { r2 PLP2 | P3 [ 1] &%
.. 4— P1P3 P2 21 84% 83%
\ .. — P2,P3 P1 1] 76%
InnerLoop
Training | Validation C Accuracy Awverage
set set Accuracy
P1 P2 86% Y
1 85%
P2 P1 84% ’ Chco o%e
P1 P2 ) 70% 80% =
P2 P1 90%




On use of cross-validation

* Empirically we found that cross-validation works well
for model selection for SVMs in many problem
domains;

* Many other approaches that can be used for model

selection for SVMs exist, e.g.:
- Generalized cross-validation
- Bayesian information criterion (BIC)
- Minimum description length (MDL)
- Vapnik-Chernovenkis (VC) dimension
- Bootstrap



SVMs for multicategory data



One-versus-rest multicategory
SVM method
$ Tumor | %/

Tumor Il

O O Tumor Il

> Gene 1




One-versus-one multicategory
SVM method

Tumor |

Gene 2

A

Tumor Il

O O
OO 5 O
?
O O
o0C o ©
O O !
O Tumor ll1 '

> Genel



DAGSVM multicategory
SVM method

AML vs. ALL T-cell

Not ALL T-cell

AML vs. ALL B-cell

Not ALL B-cell

4 ALL B-cell
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SVM multicategory methods by Weston
and Watkins and by Crammer and Singer

Gene 2
A

» Genel




Support vector regression



e-Support vector regression (e-SVR)

_ o X, X, 00y Xy € R
Given training data:

Yis Yaie Yy €R

Main idea:

Find a function f(X)=wW-X+Db
that approximates y,,...,Yy :

e it has at most € derivation from
the true valuesy;

e itis as “flat” as possible (to
X avoid overfitting)

E.g., build a model to predict survival of cancer patients that
can admit a one month error (= ¢).



Formulation of “hard-margin” e-SVR

y +e wW-X+b=0
N
X_S
Find f(X)=W-X+Db
by minimizing %HVT/HZ subject
to constraints:

y. —(W-X+b)<¢
y. —(W-X+b)>-¢

fori=1,...N.

X
>

l.e., difference between y. and the fitted function should be smaller
than € and larger than -¢ <> all points y;should be in the “e-ribbon”
around the fitted function.
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Formulation of “soft-margin” ¢-SVR

If we have points like this
(e.g., outliers or noise) we
can either:

a) increase € to ensure that
these points are within the
new g-ribbon, or

b) assign a penalty (“slack”
variable) to each of this
points (as was done for
“soft-margin” SVMs)

X<
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Formulation of “soft-margin” ¢-SVR

+e Find f(X)=w-X+b N
\%—8 by minimizing %HVVHZ +C;(§i +§i*)
subject to constraints:

y. —(W-X+b)<e+&
Y. —(W-X+b)>—-¢-&
5,820

fori=1,...N.

X<

Notice that only points outside e-ribbon are penalized!



Nonlinear ¢-SVR

N +E :
=€ Cannot approximate well

this function with small g!

3 kernel
+D(e) (D
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e-Support vector regression in
“loss + penalty” form

—

Build decision function of the form: f(X) =W-X+b
Findw anohllb that
Minimize > max(0,| y; - f (%) |-¢) +/1HWH§

i=1

\_Y_J
Loss Penalty

(“linear e-insensitive loss”)

A Loss function value

N7

—& +& Errorin approximation




Comparing ¢-SVR with popular
regression methods

Loss function

Penalty function

Resulting algorithm

Linear c-insensitive loss:

-2
& AW )
> max(0,]y, - f(%)|¢) I £-SVR
i=1
Quadratic g-insensitive loss:
N o .
> max(0, (y; — f (%))’ —¢) AW, Another variant of &-SVR
i=1
Mean squared error: H H2
y X AW Ridge regression
>y - F (%))’ z ge reg
i=1
iean lrgar errer AHWHZ Another variant of ridge
2

IIERICH

regression




Comparing loss functions of regression
methods

Linear e-insensitive loss Quadratic g-insensitive loss
» Loss function » Loss function
value value
\ / —> —>
-€ ¢ Errorin -€ g Errorin
approximation approximation

Mean squared error
» Loss function

Mean linear error

 Loss function

value value
—> >
€ g Errorin £ g Errorin
approximation approximation
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Applying ¢-SVR to real data

In the absence of domain knowledge about decision
functions, it is recommended to optimize the following
parameters (e.g., by cross-validation using grid-search):

e parameter C
e parameter ¢
e kernel parameters (e.g., degree of polynomial)

Notice that parameter € depends on the ranges of
variables in the dataset; therefore it is recommended to
normalize/re-scale data prior to applying -SVR.



Novelty detection with SYM-based
methods



What is it about?

* Find the simplest and most
compact region in the space of
predictors where the majority
of data samples “live” (i.e.,
with the highest density of
samples).

e Build a decision function that
takes value +1 in this region Decision function = -1
and -1 elsewhere.

* Once we have such a decision >
function, we can identify novel Predictor X
or outlier samples/patients in
the data.

Decision function = +1

>

Predictor Y
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Key assumptions

e We do not know classes/labels of samples (positive
or negative) in the data available for learning
=» this is not a classification problem

e All positive samples are similar but each negative
sample can be different in its own way

Thus, do not need to collect data for negative samples!



Sample applications

“Norma

III

“Novel”

N

“Nove

IH

Modified from: www.cs.huji.ac.il/course/2004/learns/NoveltyDetection.ppt 101



http://www.cs.huji.ac.il/course/2004/learns/NoveltyDetection.ppt�

Sample applications

Discover deviations in sample handling protocol when
doing quality control of assays.

ProteinY 4

Samples with high-quality

Samples with low quality
of processing

* 0 of processing from the

% lab of Dr. Smith
3

Samples with low quality
% of processing from infants
* >
% Protein X

Samples with low quality of

processing from ICU patients
* Samples with low quality of

%  processing from patients
with lung cancer




Sample applications

ldentify websites that discuss benefits of proven cancer

treatments.
Weighted
reguency o
freq y of Websites that discuss
word Y .
* benefits of proven cancer
" *  Websites that discuss treatments
i cancer prevention
methods
Websites that discuss side-effects of
proven cancer treatments
k. >
X X ]
* k¥ % k¥ Weighted
Blogs of cancer patients frequency of
word X

*% Websites that discuss
* unproven cancer treatments



One-class SYM

Main idea: Find the maximal gap hyperplane that separates data from
the origin (i.e., the only member of the second class is the origin).
o ©
®
oeo_o*"®

member of the Use “slack variables” as in soft-margin SVMs

second class to penalize these instances on



Formulation of one-class SVM:
linear case

Given training data: X, X,,...,X, € R"

o o _ . C
oo, 0° % Find T (X) =sign(w-X+b)
'0'0:'00"'0 , 1 N
® [ ° c e e 1 |l
0090 .04 o by minimizing =||W| +— +b
W-X+b=0 \,J\\ o .'Q Q"" Y 8 2 || ” N Z—llgl
/I “., ' "' '. " . .
/ 0.0 0% subject to constraints:
Q N
@ Q\ [ ) .. o
! \ ‘ W-X+b> —fi
LA >
*- . ° 5]_\ 5‘ 20 upper bound on
fori=1 N the fraction of
o outliers (i.e., points
/ outside decision
i.e., the decision function should surface) allowed in

e y the data
be positive in all training samples

except for small deviations 105



Formulation of one-class SVM:
linear and non-linear cases

Linear case

Find f (X)=sign(w-X+D)

by minimizing %HWHZ +LZN:§ +b
W i3

subject to constraints:

W-X+b>-¢&

520

fori=1,...N.

Non-linear case

(use “kernel trick”)

Find f (X) = sign(w-

D (X)

+b)

N
by minimizing L || +LZ§ +b
W T

subject to constraints:

W-D(X)Hb=>-¢&
520
fori=1,...N.




More about one-class SVM

* One-class SVMs inherit most of properties of SVMs for
binary classification (e.g., “kernel trick”, sample
efficiency, ease of finding of a solution by efficient
optimization method, etc.);

* The choice of other parameter V significantly affects
the resulting decision surface.

* The choice of origin is arbitrary and also significantly
affects the decision surface returned by the algorithm.



Support vector clustering



Goal of clustering (aka class discovery)

Given a heterogeneous set of data points X,X,,...,X, € R"

Assign labels Y;,Y5,-.., Yy €1L2,..., K} such that points
with the same label are highly “similar” to each other
and are distinctly different from the rest

¢ o ¢ ¢
“ ¢ <><>
L S ™ ¢ Clustering process X X %

k4 KK e LA Sallalt .o
*** * x ¢ ‘.0 . *** * ¢ ..o ..
* K Le% o %, * % e o %o

s © o ¢
o © o ¢




Support vector domain description

e Support Vector Domain Description (SVDD) of the data is
a set of vectors lying on the surface of the smallest
hyper-sphere enclosing all data points in a feature space

— These surface points are called Support Vectors




SVDD optimization criterion

Formulation with hard constraints:

Minimize subject to [HCI)(xi)_a”zS RZ] fori=1,...,N

Squared radius of the sphere Constraints




Main idea behind Support Vector
Clustering

e Cluster boundaries in the input space are formed by the set of
points that when mapped from the input space to the feature
space fall exactly on the surface of the minimal enclosing
hyper-sphere

— SVs identified by SVDD are a subset of the cluster boundary points




Cluster assignment in SVC

e Two pointsx and x; belong to the same cluster (i.e., have
the same label) if every point of the line segment (x,x;)

projected to the feature space lies within the hyper-
sphere

Some points lie outside the
hyper-sphere

A—E
B e
”~ A 7/ *
% XX _-
* ﬁ ’,’ ® 0\\
* 7 . /o .o. ®%
N 1
*___* / o ®q

Every point is within the hyper-
sphere in the feature space




Cluster assignment in SVC (continued)

e Point-wise adjacency matrix is K
constructed by testing the line
segments between every pair of
points

e Connected components are
extracted

e Points belonging to the same
connected component are
assigned the same label T

~
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Effects of noise and cluster overlap

* In practice, data often contains noise, outlier points and
overlapping clusters, which would prevent contour
separation and result in all points being assigned to the

same cluster

Ideal data ’.’
¢ T3
* o
* Kk 4 ¢
* L XKk
PRI
*
* *X ®
o

Typical data

*
* ok

****
x*k  x X

Noise

¢ o \\\%‘

2 |
|

|

Overlap




SVDD with soft constraints

e SVC can be used on noisy data by allowing a fraction of points,
called Bounded SVs (BSV), to lie outside the hyper-sphere

— BSVs are not considered as cluster boundary points and are not
assigned to clusters by SVC

Noise

| ' ) ¢
IOutllers

[
Overlap ¢
N .

S

Overlap

.
‘e

K
o
.
.
.
.
.
.
.
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Soft SVDD optimization criterion

Primal formulation with soft constraints:

Minimize subject to [|| cD(xi)—a||Zg R? +§i] £ >0 for i=1,...N

Squared radius of the sphere

Introduction of slack
variables £ mitigates
the influence of noise
and overlap on the
clustering process

Soft constraints

Overlap




Dual formulation of soft SVDD

Minimize [W =Z,BiK(Xi,Xi)—ZﬂiﬂjK(Xi,xj)]

subject to[OSﬁi gC] fori=1,....N

Constraints

* As before, K(x;, x;) = ®(x;)-®(x;)denotes a kernel function

e Parameter 0 < C <1 gives a trade-off between volume of the sphere and
the number of errors (C=1 corresponds to hard constraints)
. ~ _ _ |2 . .
* Gaussian kernel K(X;,X;) = exp(—nyi —X; H ) tends to yield tighter
contour representations of clusters than the polynomial kernel

e The Gaussian kernel width parameter » >0 influences tightness of
cluster boundaries, number of SVs and the number of clusters

* Increasing » causes an increase in the number of clusters



SVM-based variable selection



Understanding the weight vector w

Recall standard SVM formulation:

Find w and b that minimize
%HVT/HZ subjectto Y. (W-X +b) >1
fori=1,... N.

Use classifier: f (X) =sign(w-X+Db)

Negative instances (y=-1) Positive instances (y=+1)

 The weight vector W contains as many elements as there are input
variables in the dataset, i.e. We R".

 The magnitude of each element denotes importance of the
corresponding variable for classification task.
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Understanding the weight vector w

w=(11)
Ix, +1x,+b =0

X, and X, are equally important

X, % W=(0)

* % X Ox, +1x, +b=0
*** * *"’ )‘;‘,
Bt SEED SED STRES

o0 ° ® _o
0 0% 00 00y 0%

X, is important, X, is not

O w=(0)
X2 | 1% +0x,+b=0
FxX | e o0
* X 4| io o
WXk K | 90 see
kKK | je dee,
) ¢ * E‘ :' "

X, is important, X, is not

X3

w=(110)
1%, +1x, +0X, +b =0

X, and X, are
equally important,

X;is not
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Understanding the weight vector w

Gene X A
2 ]
Melanoma SVM decision surface
Nevi ® e w=(11)
| I +1x,+b=0
m ik

Decision surface of
another classifier

| 1x, +0x,+b=0

True model

Xl
>
Gene X; / \
*In the true model, X, is causal and X, is redundant
o _ _ X, Phenotype
*SVM decision surface implies that X; and X, are equally
important; thus it is locally causally inconsistent
* There exists a causally consistent decision surface for this example

* Causal discovery algorithms can identify that X, is causal and X, is redundant

= |o




Simple SVM-based variable selection
algorithm

Algorithm:

1. Train SVM classifier using data for all variables to
estimate vector W

2. Rank each variable based on the magnitude of the
corresponding element in vector W

3. Using the above ranking of variables, select the
smallest nested subset of variables that achieves the
best SVM prediction accuracy.




Simple SVM-based variable selection
algorithm

Consider that we have 7 variables: X, X,, X3, X,, X5, X¢, X5
The vector Wis: (0.1, 0.3, 0.4, 0.01, 0.9, -0.99, 0.2)
The ranking of variables is: X, Xc, X5, X,, X5, X{, X,

Subset of variables

Classification

=> Select the following variable subset: X, X;, X3, X, , X,

accuracy
N

Xe | Xg | X3 | X, 7 1 X, 0.920

Best classification accuracy
Xe | Xo | X3 | X, 7 X, 0.920
Xe | Xg | X3 | X, ; 0.919 <4— Classification accuracy that is

statistically indistinguishable
Xe | Xs | X3 | X, 0.852 from the best one
Xe | Xg | X3 0.843
Xe | Xg 0.832
Xeg 0.821
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Simple SVM-based variable selection
algorithm

e SVM weights are not locally causally consistent 2 we
may end up with a variable subset that is not causal
and not necessarily the most compact one.

e The magnitude of a variable in vector W estimates
the effect of removing that variable on the objective
function of SVM (e.g., function that we want to
minimize). However, this algorithm becomes sub-
optimal when considering effect of removing several
variables at a time... This pitfall is addressed in the
SVM-RFE algorithm that is presented next.



SVM-RFE variable selection algorithm

Algorithm:

1. Initialize V to all variables in the data

2. Repeat

3. Train SVM classifier using data for variables in V to
estimate vector W

4, Estimate prediction accuracy of variables in V using
the above SVM classifier (e.g., by cross-validation)

5. Remove from V a variable (or a subset of variables)

with the smallest magnitude of the corresponding
element in vector W
6. Until there are no variablesin V
7. Select the smallest subset of variables with the best
prediction accuracy



SVM-RFE variable selection algorithm

( ) 5,000 ( ) 2,500
sl Prediction Important for Prediction Important for o
\accuracy J classification \accuracy J classification
Discarded Discarded

Not important

Not important oo
for classification

for classification

e Unlike simple SVM-based variable selection algorithm, SVM-
RFE estimates vector W many times to establish ranking of the
variables.

* Notice that the prediction accuracy should be estimated at
each step in an unbiased fashion, e.g. by cross-validation.
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SVM variable selection in feature space

The real power of SVMs comes with application of the kernel
trick that maps data to a much higher dimensional space
(“feature space”) where the data is linearly separable.

A
© o
o
o CE) Tumor o
o Em g ® o
O - m N
o o m'"E gm® kernel
@) | H B @)
Co B m " mm o —_
o W mam =m
O "OgMgg® Og @
OooI 5° o
oo%oo
O o |Normal
o® 2
o5 o 00
e

» Genel

input space feature space




SVM variable selection in feature space

e We have data for 100 SNPs (X,,...,X,59) @and some phenotype.
* We allow up to 3" order interactions, e.g. we consider:

© Xy X100
o X,2,X X0y X Xapees X1 X100 1ererX 1002
o X3, X XXz, XXX 0o X XosX 100 5eeer X100

e Task: find the smallest subset of features (either SNPs or
their interactions) that achieves the best predictive
accuracy of the phenotype.

e Challenge: If we have limited sample, we cannot explicitly
construct and evaluate all SNPs and their interactions
(176,851 features in total) as it is done in classical statistics.




SVM variable selection in feature space

Heuristic solution: Apply algorithm SVM-FSMB that:
1. Uses SVMs with polynomial kernel of degree 3 and
selects M features (not necessarily input variables!)
that have largest weights in the feature space.

E.g., the algorithm can select features like: X,,,
(X1X5), (XX,X,,), (X5%X4g), and so on.

2. Apply HITON-MB Markov blanket algorithm to find
the Markov blanket of the phenotype using M
features from step 1.



Computing posterior class
probabilities for SVM classifiers



Output of SVM classifier

1. SVMs output a class label
(positive or negative) for each
sample: sign(w- X + b)

2. One can also compute distance
from the hyperplane that
separates classes, e.g. W-X +h

These distances can be used to

Negative samples (y=-1) Positive samples (y=+1)

compute performance metrics
like area under ROC curve.

Question: How can one use SVMs to estimate posterior
class probabilities, i.e., P(class positive | sample x)?
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Simple binning method

1. Train SVM classifier in the Training set.

2. Apply it to the Validation set and compute distances

ETTIrNENENCNEN

Distance

3. Create a histogram with Q (e.g., say 10) bins using the

Number of samples

from the hyperplane to each sample.

-2 03 038

above distances. Each bin has an upper and lower
value in terms of distance.

in validation set

25

201

151

101

Distance

Training set

Validation set

Testing set
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4.

Number of samples

Simple binning method

Given a new sample from the Testing set, place it in
the corresponding bin.

E.g., sample #382 has distance to hyperplane =1, so it
is placed in the bin [0, 2.5]

25

201

in validation set

-15 -10 -5 0 5 10 15
Distance

Compute probability P(positive class | sample #382) as
a fraction of true positives in this bin.

E.g., this bin has 22 samples (from the Validation set),
out of which 17 are true positive ones, so we compute
P(positive class | sample #382) =17/22 =0.77

Training set

Validation set

Testing set




Platt’s method

Convert distances output by SVM to probabilities by passing them
through the sigmoid filter:

1
1+exp(Ad + B)

where d is the distance from hyperplane and A and B are parameters.

P(positive class|sample) =

1

0.9

0.8

©
N

©
o

© <
N
T T

©
w

P(positive class|sample)
o
()]

©
N

o
Lo B
o T

1 1 1
-8 -6 4

Distance



Platt’s method

1. Train SVM classifier in the Training set.

2. Apply it to the Validation set and compute distances Training set
from the hyperplane to each sample.

E I EN EN N E P EIEN Y

Distance -2 0.3 0.8 Validation set

3. Determine parameters A and B of the sigmoid
function by minimizing the negative log likelihood of Testing set
the data from the Validation set.

4. Given a new sample from the Testing set, compute its
posterior probability using sigmoid function.
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Part 3

e Case studies (taken from our research)
1. Classification of cancer gene expression microarray data
Text categorization in biomedicine
Prediction of clinical laboratory values
Modeling clinical judgment
Using SVMs for feature selection
6. Outlier detection in ovarian cancer proteomics data

s W

e Software
 Conclusions
e Bibliography



|. Classification of cancer gene
expression microarray data



Comprehensive evaluation of algorithms
for classification of cancer microarray data

Main goals:

e Find the best performing decision support
algorithms for cancer diagnosis from
microarray gene expression data;

e |[nvestigate benefits of using gene selection
and ensemble classification methods.




Classifiers

K-Nearest Neighbors (KNN)
Backpropagation Neural Networks (NN)
Probabilistic Neural Networks (PNN)
Multi-Class SVM: One-Versus-Rest (OVR)
Multi-Class SVM: One-Versus-One (OVO)
Multi-Class SVM: DAGSVM

Multi-Class SVM by Weston & Watkins (WW)
Multi-Class SVM by Crammer & Singer (CS)
Weighted Voting: One-Versus-Rest
Weighted Voting: One-Versus-One
Decision Trees: CART

instance-based

neural
networks

kernel-based

voting

decision trees
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Ensemble classifiers

Classifier 1 Classifier 2
o !\ -
: Prediction 1 Prediction 2
|
Ensemble
Classifier
Final

Prediction

Classifier N

Prediction N

|
: dataset
|

M S B S S S S S S e e e e e s s s el
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Gene selection methods

Highly discriminatory genes

Uninformative genes / \ 1. Signal-to-noise (S2N) ratio in
/v one-versus-rest (OVR)
fashion;

Signal-to-noise (S2N) ratio in
one-versus-one (OVO)
fashion;

T S
| |
N

3. Kruskal-Wallis nonparametric
one-way ANOVA (KW);

4. Ratio of genes between-
categories to within-category
sum of squares (BW).
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Performance metrics and
statistical comparison

1. Accuracy

+ can compare to previous studies
+ easy to interpret & simplifies statistical comparison

2. Relative classifier information (RCI)

+ easy to interpret & simplifies statistical comparison
+ not sensitive to distribution of classes
+ accounts for difficulty of a decision problem

e Randomized permutation testing to compare accuracies
of the classifiers (0.=0.05)
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Microarray datasets

Total:
®~1300 samples
e 74 diagnostic categories
e/41 cancer types and
12 normal tissue types

Number of
Dataset name | Sam- | VVariables | Cate-| Reference
ples | (genes) |gories
11 Tumors 174 12533 11 |Su, 2001
14 _Tumors 308 15009 26 |Ramaswamy, 2001
9 Tumors 60 5726 9 |Staunton, 2001
Brain_Tumorl | 90 5920 5 |Pomeroy, 2002
Brain_Tumor2 | 50 10367 4  |Nutt, 2003
Leukemial 72 5327 3 |Golub, 1999
Leukemia?2 72 11225 3 |Armstrong, 2002
Lung_Cancer | 203 12600 5 |Bhattacherjee, 2001
SRBCT 83 2308 4  |Khan, 2001
Prostate_ Tumor| 102 10509 2 |Singh, 2002
DLBCL 77 5469 2 |Shipp, 2002




Summary of methods and datasets

. Cross-Validation | | Gene Selection . | Performance | | Statistical |
Designs (2) ; Methods (4) i Metrics (2) i Comparison
i 10-Fold CV i i S2N One-Versus-Rest i E | Accuracy | i i Randomized |
i LOOCV i i S2N One-Versus-One i i | R | i i permutation testing i
________________________________ . : Non-param. ANOVA I P m e
. Classifiers (11) L BW ratio :Gene Expression Datasets (11)!
i 4 One-Versus-Rest . s ees S St | i / 11 _Tumors i
i s One-Versus-One i e GEEEE TR T R ! | 14_Tumors |
i §< Y | Ensemble Classifiers (7) x 3 Tumore ;
| L 4 S—— : | > = i
! = Method by WW : i Jeljorfisy Ot : : = Brain Tumorl :
| 1 Qg l : 2 :
i _ Method by CS Lo E 3 L DUl Ol i i 8 < Brain_Tumor2 I
| KNN 1T g 4 MC-SVM OVO | | = Leukemial |
i Backprop. NN i i o 3 WU IS SN i i Leukemia2 i
i Prob. NN i i 2 \ Decision Trees i | Lung_Cancer i
| - e ; ; = |
! Decision Trees A I — , ! ' \ SRBCT :
! : 1 0 G Majority Voting | | |
! oo £33 : : 3 :
: - One-Versus-Rest : : _g © : — : ! D> Prostate_Tumors :
! S | : Q= Decision Trees : ! = )
| One-Versus-One A i i = DLBCL i



Results without gene selection
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Improvement in accuracy, %

70

60 |

50 |

40 1
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20 r
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Results with gene selection

Improvement of diagnostic

performance by gene selection
(averages for the four datasets)

& o 2

OVR  OVO DAGSVM Ww

NN

PNN

SVM non-SVM

Accuracy, %

Diagnostic performance
before and after gene selection

100 9 Tumors | 14 Tumors
80

60

40

N
o

10¢  Brain_Tumorl Brain_Tumor2

[e]
o

(o2}
o

N
o

N
o

SVM non-SVM SVM non-SVM

Average reduction of genes is 10-30 times
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Comparison with previously
published results

Multiclass SVMs
(this study)

100 L

80 |

60 |

Multiple specialized
classification methods
(original primary studies)

40 |

Accuracy, %

20 |




Summary of results

e Multi-class SVMs are the best family among the
tested algorithms outperforming KNN, NN, PNN, DT,
and WV.

e Gene selection in some cases improves classification
performance of all classifiers, especially of non-SVM
algorithms;

e Ensemble classification does not improve
performance of SVM and other classifiers;

e Results obtained by SVMs favorably compare with the
literature.



Random Forest (RF) classifiers

 Appealing properties
— Work when # of predictors > # of samples
— Embedded gene selection
— Incorporate interactions
— Based on theory of ensemble learning
— Can work with binary & multiclass tasks
— Does not require much fine-tuning of parameters

e Strong theoretical claims

e Empirical evidence: (Diaz-Uriarte and Alvarez de
Andres, BMC Bioinformatics, 2006) reported
superior classification performance of RFs compared
to SVMs and other methods



Key principles of RF classifiers

Training
data

|) Generate
bootstrap
samples

selection decision trees

D

2,

e

Q.\Ah,

2R

> > hy U9
% &

4) Apply to testing data &
combine predictions

& B
0
l/‘

D

2,

e

— Testing
data

ENES0
l/@’

—

EG

l

A,.NQMK
) R
— — iy BI®
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2) Random gene 3) Fit unpruned
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Results without gene selection

Binary classification tasks Multicategory classification tasks
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e SVMs nominally outperform RFs is 15 datasets, RFs outperform SVMs in 4 datasets,
algorithms are exactly the same in 3 datasets.

* In 7 datasets SVMs outperform RFs statistically significantly.

* On average, the performance advantage of SVMs is 0.033 AUC and 0.057 RCI. 152



Results with gene selection

Binary classification tasks Multicategory classification tasks
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e SVMs nominally outperform RFs is 17 datasets, RFs outperform SVMs in 3 datasets,
algorithms are exactly the same in 2 datasets.

* In 1 dataset SVMs outperform RFs statistically significantly.

* On average, the performance advantage of SVMs is 0.028 AUC and 0.047 RCI. 153



2. Text categorization in biomedicine



Models to categorize content and quality:
Main idea
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Models to categorize content and quality:
Main idea

Unseen
Examples

3. Train SVM models that capture

Labeled
Examples

- . / implicit categories of meaning or
. B ' .-:EE:"._ quality criteria
— ; —_— T L= .I.I.. 1

4. Evaluate models’ performances

- with nested cross-validation or other
appropriate error estimators

- use primarily AUC as well as other metrics
(sensitivity, specificity, PPV, Precision/Recall
curves, HIT curves, etc.)

000000000
ORNWAUOONOOR

5. Evaluate performance prospectively &
compare to prior cross-validation estimates
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Models to categorize content and quality:
Some notable results

Category Average AUC Range AUC AUC AUC AUC
over n folds
Google Pagerank () 54 0.54 0.43 0.46
Treatment 0.97* 0.96 - 0.98 Yahoo Webranks () G ¢ 0.49 052 052
Etiology 0.94* 0.89 — 0.95
Prognosis 0.95* 0.92 — 0.97 iopaccFactor 0.67 0.62 0.51 0.52
Diagnosis 0.95* 0.93-0.98 Weblpagelhic 0163 0.63 0.58 0.57
count : : - :
1. SVM models have iblioment
. ) ] Bibliometric 0,76 0.69 0.67 0.60
excellent ability to identify
high-quality PubMed Machine Learning - ), 96 0.95 0.95 0.95
documents according to
ACPJ gold standard 2. SVM models have better classification

performance than PageRank, Yahoo ranks,
Impact Factor, Web Page hit counts, and
bibliometric citation counts on the Web
according to ACPJ gold standard
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Models to categorize content and quality:
Some notable results

Treatment - Fixed Sensitivity Treatment - Fixed Specificity
1 0.98 0.98 1 0.95 0.91 0.91
Gold standard: SSOAB Area under the ROC 83 3 R —
curve* 3 85 3
8 g2
0 0
SSOAB-specific filters o8 y  xedses Spee sene ixed Spee
‘EIQ ery Filters B Learning Models ‘ ‘EIQuery Filters @ Learning Models‘
Citation Count 0.791 _ _ .
Etiology - Fixed Sensitivity Etiology - Fixed Specificity
— - N 0.98 0.98 0.94
ACPJ Txmt-specific filters | 0.548 887 o §:§; 0.68
82 o -
0.4 0.4 -
Impact Factor (2001) 0.549 §3- 831
0o T K] T
Fixed Sens Spec Sens Fixed Spec
I mpaCt Factor (2005) 0.558 ‘EIQuery Filters B Learning Models‘ ‘EI Query Filters B Learning Models
Diagnosis - Fixed Sensitivity Diagnosis - Fixed Specificity
N 0.96 0.96 088 N 0.97 0.97
8287 — 08 ] i o2
3. SVM models have better e —I R
0.4 1 0.4 +
1£: : 8:% 1 8:% ]
classification performance than 1 e \
ixel ens pec Sens Fixed Spec
‘EI Query Filters B Learning Models ‘ ‘EI Query Filters B Learning Models ‘
PageRank, Impact Factor and
Prognosis - Fixed Sensitivity Prognosis - Fixed Specificity

Citation count in Medline for

SSOAB gold standard / —l 1J
T .
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4. SVM models have better sensitivity/specificity in PubMed than CQFs at
comparable thresholds according to ACPJ gold standard 158



Other applications of SYMs to text
categorization

Receiver Operating Curves
1.0 T T

Area Under the
Curve
0.8
[}
Machine Learning Models 0.93 E
Vo6
=
4+
Quackometer* 0.67 'g
004
)
>
Google 0.63 = .
02 ,* — Support Vector Machine

' - = Quackometer

' .- Google
08% 0.2 04 0.6 0.8 1.0
False positive rate

1. Identifying Web Pages with misleading treatment information according
to special purpose gold standard (Quack Watch). SVM models outperform
Quackometer and Google ranks in the tested domain of cancer treatment.

2. Prediction of future paper citation counts (work of L. Fu and C.F. Aliferis,
AMIA 2008)
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3. Prediction of clinical laboratory
values



Dataset generation and
experimental design

e StarPanel database contains ~8-10° lab measurements of ~100,000 in-
patients from Vanderbilt University Medical Center.
e Lab measurements were taken between 01/1998 and 10/2002.

For each combination of lab test and normal range, we generated
the following datasets.

01/1998-05/2001 06/2001-10/2002

A — A <
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Query-based approach for
prediction of clinical cab values

\4
Data model database x_ %,
%/6’7:'0%79/
v Y v
. . e /);é’ /Ceé/@ .
[Traln SVM classifier }/ Testing
sample
\4
A\ 4
- Optimal
[SVM classifier }/» datg odel
Performance
These steps are performed \ 4
for every testing sample Prediction ‘J
These steps are performed

for every data model

162



Classification results

Including cases with K=0 (i.e. samples
with no prior lab measurements)

Area under ROC curve (without feature selection)

Range of normal values

Excluding cases with K=0 (i.e. samples

with no prior lab measurements)

Area under ROC curve (without feature selection)

Range of normal values

>1 <99 [[1,99]| >255 [ <975 [[2.5,97.5]
BUN | 75.9% | 93.4% | 68.5% | 81.8% | 92.2% | 66.9%
Ca | 67.5% | 80.4% | 55.0% | 77.4% | 70.8% | 60.0%
7 | Calo | 63.5% | 52.9% | 58.8% | 46.4% | 66.3% | 58.7%
S| co2 | 77.3% | 88.0% | 53.4% | 77.5% | 90.5% | 58.1%
% Creat | 62.2% | 88.4% | 83.5% | 88.4% | 94.9% | 83.8%
S| Mg |584% | 71.8% | 64.2% | 67.0% | 725% | 62.1%
S [ osmol | 77.9% | 64.8% | 65.2% | 79.2% | 82.4% | 71.5%
PCV | 62.3% | 91.6% | 69.7% | 76.5% | 84.6% | 70.2%
Phos | 70.8% | 75.4% | 60.4% | 68.0% | 81.8% | 65.9%

>1 <99 [ [1,99] [ >2.5 | <975 [[2.5,97.5]
BUN | 80.4% | 99.1% | 76.6% | 87.1% | 98.2% | 70.7%
Ca |728% |93.4% | 55.6% | 81.4% | 81.4% | 63.4%
= | Calo | 74.1% | 60.0% | 50.1% | 64.7% | 72.3% | 57.7%
2 [ coz | 82.0% | 93.6% | 59.8% | 84.4% | 945% | 56.3%
% Creat | 62.8% | 97.7% | 89.1% | 915% | 98.1% | 87.7%
S| Mg |569% | 70.0% | 49.1% | 58.6% | 76.9% | 59.1%
S [osmol | 50.9% | 60.8% | 60.8% | 91.0% | 905% | 68.0%
PCV | 74.9% | 99.2% | 66.3% | 80.9% | 80.6% | 67.1%
Phos | 74.5% | 93.6% | 64.4% | 71.7% | 92.2% | 69.7%

A total of 84,240 SVM classifiers were built for 16,848 possible data models.




Improving predictive power and parsimony
of a BUN model using feature selection

Model description x 10" Histogram of test BUN
Test name BUN 3 T T T T
Range of normal values < 99 perc.
Data modeling SRT
i —~ 25 i
Number of previous 5 w
measurements 3
Use variables corresponding to Yes % 2 7
hospitalization units? 7
Number of prior 2 é 15 |
hospitalizations used >
L =
Dataset description e 1 1
=1 105
N samples| N abnormal N o)
(total) samples |variables L o5 normal _|_  abnormal -
Training set 3749 78 values values
Validation set 1251 27 3442 0O 50 100 1'50 2(')0 250
Testing set 836 16 Test value
Classification performance (area under ROC curve)
All RFE Linear RFE Poly HITON PC HITON MB
Validation set 95.29% 98.78% 98.76% 99.12% 98.90%
Testing set 94.72% 99.66% 99.63% 99.16% 99.05%
Number of features 3442 26 3 11 17




Classification performance (area under ROC curve)

All RFE Linear RFE_Poly HITON PC HITON_MB
Validation set 95.29% 98.78% 98.76% 99.12% 98.90%
Testing set 94.72% 99.66% 99.63% 99.16% 99.05%
Number of features 3442 26 3 11 17
Features
1 LAB: PM_1(BUN) LAB: PM_1(BUN) LAB: PM_1(BUN) LAB: PM_1(BUN)
2 LAB: PM_2(Cl) LAB: Indicator(PM_1(Mg)) |LAB: PM_5(Creat) LAB: PM_5(Creat)
LAB: Test Unit
3 LAB: DT(PM_3(K)) NO_TEST_MEASUREMENT |LAB: PM_1(Phos) LAB: PM_3(PCV)
(Test Calo, PM 1)
4 LAB: DT(PM_3(Creat)) LAB: Indicator(PM_1(BUN)) LAB: PM_1(Mg)
5 LAB: Test Unit J018 (Test Ca, PM 3) LAB: Indicator(PM_5(Creat)) LAB: PM_1(Phos)
6 LAB: DT(PM_4(Cl)) LAB: Indicator(PM_1(Mg)) LAB: Indicator(PM_4(Creat))
7 LAB: DT(PM_3(Mg)) LAB: DT(PM_4(Creat)) LAB: Indicator(PM_5(Creat))
8 LAB: PM_1(Cl) LAB: Test Unit 7SCC (Test Ca, PM 1) |LAB: Indicator(PM_3(PCV))
9 LAB: PM_3(Gluc) LAB: Test Unit RADR (Test Ca, PM 5) |LAB: Indicator(PM_1(Phos))
10 LAB: DT(PM_1(CO2)) LAB: Test Unit 7SMI (Test PCV, PM 4) | LAB: DT(PM_4(Creat))
11 LAB: DT(PM_4(Gluc)) DEMO: Gender LAB: Test Unit 11NM (Test BUN, PM 2)
12 LAB: PM_3(Mg) LAB: Test Unit 7SCC (Test Ca, PM 1)
13 LAB: DT(PM_5(Mg)) LAB: Test Unit RADR (Test Ca, PM 5)
14 LAB: PM_1(PCV) LAB: Test Unit 7SMI (Test PCV, PM 4)
15 LAB: PM_2(BUN) LAB: Test Unit CCL (Test Phos, PM 1)
16 LAB: Test Unit 11NM (Test PCV, PM 2) DEMO: Gender
17 LAB: Test Unit 7SCC (Test Mg, PM 3) DEMO: Age
18 LAB: DT(PM_2(Phos))
19 LAB: DT(PM_3(CO2))
20 LAB: DT(PM_2(Gluc))
21 LAB: DT(PM_5(Calo))
22 DEMO: Hospitalization Unit TVOS
23 LAB: PM_1(Phos)
24 LAB: PM_2(Phos)
25 LAB: Test Unit 11NM (Test K, PM 5)
26 LAB: Test Unit VHR (Test Calo, PM 1)




4. Modeling clinical judgment



Methodological framework and study
outline

Patients Guidelines
. Predict clinical decisions
Physicians
|—' v
o Clinical Identify predictors
eaiire Diagnosis |gnor_eq by
physicians
fro.f, cd;
C*-' A\ 4 A 4
5 cdy Explain each physician’s
é diagnostic model
froofn cd, v
o Compare physicians with each
2 other and with guidelines
g cdy
=
[a

different across physicians




Clinical context of experiment

Malignant melanoma is the most dangerous form of skin cancer

Incidence & mortality have been constantly increasing in
the last decades.

25
225
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=
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Physicians and patients

Patients - N=177

Dermatologists > N=6
- 3 non-experts

- 101 nevi

available

Data collection:

Patients seen prospectively,
from 1999 to 2002 at
Department of Dermatology,
S.Chiara Hospital, Trento, Italy

inclusion criteria: histological
diagnosis and >1 digital image

Diagnoses made in 2004

Features

Lesion
location

Family history of
melanoma

Irregular Border

Streaks (radial
streaming, pseudopods)

Max-diameter

Fitzpatrick’s

Number of colors

Slate-blue veil

Photo-type
Min-diameter |[Sunburn Atypical pigmented Whitish veil
network
Evolution Ephelis Abrupt network cut-off Globular elements
. . Comedo-like openings,
Age Lentigos Regression-Erythema milia-like cysts
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Method to explain physician-specific
SVM models
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Results: Predicting physicians’ judgments

Dhivsicans All HITON_PC | HITON_MB RFE
(features) | (features) (features) (features)
Expert 1 0.94 (24) | 0.92 (4) 0.92 (5) 0.95 (14)
Expert 2 0.92(24) | 0.89 (7) 0.90 (7) 0.90 (12)
Expert 3 0.98 (24) | 0.95 (4) 0.95 (4) 0.97 (19)

NonExpert1 | 0.92 (24) | 0.89 (5) 0.89 (6) 0.90 (22)

NonExpert 2 | 1.00 (24) 0.99 (6) 0.99 (6) 0.98 (11)

NonExpert 3 | 0.89 (24) 0.89 (4) 0.89 (6) 0.87 (10)




Results: Physician-specific models
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Results: Explaining physician agreement

que irregular border streaks
veil
Patient 001 yes no yes
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Results: Explain physician disagreement

Blue | irregular number :
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Results: Guideline compliance

Physician Reported Compliance
guidelines

Non-compliant: they ignore the
Pattern analysis majority of features (17 to 20)
recommended by pattern analysis.

Expertsl,2,3,
non-expert 1

Non compliant: asymmetry, irregular
border and evolution are ignored.

Non expert2 | ABCDE rule

Non-standard. Non compliant: 2 out of 7 reported
Non expert 3 Reports using 7 features are ignored while some non-
features reported ones are not

On the contrary: In all guidelines, the more predictors present,
the higher the likelihood of melanoma. All physicians were
compliant with this principle.




5. Using SVMs for feature selection



Feature selection methods

Feature selection methods (hon-causal)

* SVM-RFE <« This is an SVM-based
e Univariate + wrapper feature selection
e Random forest-based method
e LARS-Elastic Net @
* RELIEF + wrapper <N
* LO-norm ®\ / ®
* Forward stepwise feature selection G @' 1
e No feature selection /:( .
|

Causal feature selection methods
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e HITON-MB \ This method outputsa @~ —cececdeeaa---
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| 3 real datasets were used to evaluate
feature selection methods

Dataset name Domain N””.‘ber of | Number of Target Data type
variables samples
Infant_Mortality Clinical 86 5,337 Died within the first year discrete
Ohsumed Text 14,373 5,000 Relevant to nenonatal diseases continuous
ACPJ_Etiology Text 28,228 15,779 Relevant to eitology continuous
Gene . . .
Lymphoma . 7,399 227 3-year survival: dead vs. alive continuous
expression
. Digit .
Gisette . 5,000 7,000 Separate 4 from 9 continuous
recognition
Dexter Text 19,999 600 Relevant to corporate acquisitions continuous
Sylva Ecology 216 14,394 Ponderosa pine vs. everything else continuous & discrete
Ovarian_Cancer | Proteomics 2,190 216 Cancer vs. normals continuous
. Drug A . . .
Thrombin . 139,351 2,543 Binding to thromin discrete (binary)
discovery
Gene . .
Breast_Cancer ; 17,816 286 Estrogen-receptor positive (ER+) vs. ER-  |continuous
expression
. Drug L . . . .
Hiva . 1,617 4,229 Activity to AIDS HIV infection discrete (binary)
discovery
Nova Text 16,969 1,929 Separate politics from religion topics discrete (binary)
Bankruptcy Financial 147 7,063 Personal bankruptcy continuous & discrete




Classification performance vs. proportion
of selected features
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Statistical comparison of predictivity and
reduction of features

Predicitivity Reduction

P-value Nominal winner P-value Nominal winner

0.9754 SVM-RFE 0.0046 HITON-PC
SVM-REE 0.8030 SVM-RFE 0.0042 HITON-PC
(4 variants) 0.1312 HITON-PC 0.3634 HITON-PC

0.1008 HITON-PC | 0.6816 SVM-RFE

e Null hypothesis: SVM-RFE and HITON-PC perform the same;
e Use permutation-based statistical test with alpha = 0.05.



Simulated datasets with known causal
structure used to compare algorithms

Bayesian Number of .. Number of selected

ne’;work variables Training samples targets
Childi0 200 5x 200,35 x 500, 1x 5000 10
Insurancel( 270 5x200.5x500,1x35000 10
Alarml10 370 5x200.5x500,1x35000 10
Hailfinderl0 560 5 x 200, 5 x 500, 1 x 5000 10
Munin 189 5x 500, 1 x 5000 6
Pigs 441 5x 200, 5x 500, 1 x5000 10
Link 724 5x 200,35 x 500, 1x 5000 10
Lung Cancer 800 5x 200, 5x 500, 1 x5000 11
Gene 801 5x 200, 5 x 500, 1 x5000 11




Comparison of SYM-RFE and HITON-PC
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Comparison of all methods in terms of
causal graph distance
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Summary results
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Statistical comparison of graph distance

Sample size = Sample size = Sample size =
200 500 5000
. Nominal Nominal Nominal
Comparison P-value : P-value : P-value :
winner winner winner
average HITON-PC-FDR D s D
with G? test vs. average <0.0001 HITSEID\IRPC 0.0028 HITI?[I)\IRPC <0.0001 HITI?[I)\IRPC
SVM-RFE

* Null hypothesis: SVM-RFE and HITON-PC-FDR perform the same;
e Use permutation-based statistical test with alpha = 0.05.



6. Outlier detection in ovarian cancer
proteomics data



Ovarian cancer data

Data Set 1 (Top), Data Set 2 (Bottom)
X [ I3

Same set of 216 Cancer
patients, obtained

using the Ciphergen
H4 ProteinChip /

Normal

i |
i
@!

array (dataset 1)
and USIng the Other
Ciphergen WCX2
ProteinChip array\
(dataset 2) Cancer

Normal

Other

1 b AR Rt ]

4000 8000 12000
Clock Tick

The gross break at the “benign disease” juncture in dataset 1 and the similarity of the
profiles to those in dataset 2 suggest change of protocol in the middle of the first
experiment.



Experiments with one-class SVYM

Assume that sets {A, B} are s
normal and {C, D, E, F} are H = I E
outliers. Also, assume that we
do not know what are normal
and outlier samples.

*Experiment 1: Train one-class SVM |
on {A, B, C} and test on {A, B, C}:
Area under ROC curve = 0.98

eExperiment 2: Train one-class SVM
on {A, C} and test on {B, D, E, F}:
Area under ROC curve = 0.98

[im o s bt it g BB L 4k Rk L]
L et R ELatl LI, Gt RIS T |41

4000 8000 12000
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Software



Interactive media and animations

SVM Applets

e http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml
http://www.smartlab.dibe.unige.it/Files/sw/Applet%20SVM/svmapplet.html
http://www.eee.metu.edu.tr/~alatan/Courses/Demo/AppletSVM.html
http://www.dsl-lab.org/svm tutorial/demo.html (requires Java 3D)

Animations

e Support Vector Machines:
http://www.cs.ust.hk/irproj/Regularization%20Path/svmKernelpath/2moons.avi
http://www.cs.ust.hk/irproj/Regularization%20Path/svmKernelpath/2Gauss.avi
http://www.youtube.com/watch?v=3liCbRZPrZA

* Support Vector Regression:
http://www.cs.ust.hk/irproj/Regularization%20Path/movie/ga0.5lam1.avi
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Several SYM implementations for
beginners

e GEMS: http://www.sems-system.org

e \Weka: http://www.cs.waikato.ac.nz/ml/weka/

e Spider (for Matlab): http://www.kyb.mpg.de/bs/people/spider/

e CLOP (for Matlab): http://clopinet.com/CLOP/
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Several SYM implementations for
intermediate users

e LibSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/

o General purpose

o Implements binary SVM, multiclass SVM, SVR, one-class SVM
o Command-line interface

a Code/interface for C/C++/C#, Java, Matlab, R, Python, Pearl

e SVMLight: http://svmlight.joachims.org/
o General purpose (designed for text categorization)
o Implements binary SVM, multiclass SVM, SVR
o Command-line interface
a Code/interface for C/C++, Java, Matlab, Python, Pearl

More software links at http://www.support-vector-machines.org/SVM soft.html
and http://www.kernel-machines.org/software



http://www.csie.ntu.edu.tw/~cjlin/libsvm/�
http://svmlight.joachims.org/�
http://www.support-vector-machines.org/SVM_soft.html�
http://www.kernel-machines.org/software�

Conclusions



Strong points of SVM-based learning
methods

Empirically achieve excellent results in high-dimensional data
with very few samples

Internal capacity control to avoid overfitting

Can learn both simple linear and very complex nonlinear
functions by using “kernel trick”

Robust to outliers and noise (use “slack variables”)

Convex QP optimization problem (thus, it has global minimum
and can be solved efficiently)

Solution is defined only by a small subset of training points
(“support vectors”)

Number of free parameters is bounded by the number of
support vectors and not by the number of variables

Do not require direct access to data, work only with dot-
products of data-points.



Weak points of SVM-based learning
methods

Measures of uncertainty of parameters are not
currently well-developed

Interpretation is less straightforward than classical
statistics

Lack of parametric statistical significance tests

Power size analysis and research design considerations
are less developed than for classical statistics
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Thank you for your attention!
Questions/Comments?

Email: Alexander.Statnikov@med.nyu.edu

URL: http://ww.nyuinformatics.org
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