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Duality for the SVM

Posted on June 12, 2017 by j2kun
This post is a sequel to Formulating the Support Vector Machine Optimization Problem
(https://jeremykun.com/2017/06/05/formulating-the-support-vector-machine-optimization-problem/).

The Karush-Kuhn-Tucker theorem

Generic optimization problems are hard to solve efficiently. However, optimization problems whose
objective and constraints have special structure often succumb to analytic simplifications. For
example, if you want to optimize a linear function subject to linear equality constraints, one can
compute the Lagrangian (https://jeremykun.com/2013/11/30/lagrangians-for-the-amnesiac/) of the
system and find the zeros of its gradient. More generally, optimizing a linear function subject to
linear equality and inequality constraints can be solved using various so-called “linear programming
(https://jeremykun.com/2014/06/02/linear-programming-and-the-most-affordable-healthy-diet-part-
1/)” techniques, such as the simplex algorithm (https://jeremykun.com/2014/12/01/linear-
programming-and-the-simplex-algorithm/).

However, when the objective is not linear, as is the case with SVM, things get harder. Likewise, if the
constraints don’t form a convex set you're (usually (http://www.offconvex.org/)) out of luck from the
standpoint of analysis. You have to revert to numerical techniques and cross your fingers. Note that
the set of points satisfying a collection of linear inequalities forms a convex set, provided they can all
be satisfied.

We are in luck. The SVM problem can be expressed as a so-called “convex quadratic” optimization
problem, meaning the objective is a quadratic function and the constraints form a convex set (are
linear inequalities and equalities). There is a neat theorem that addresses such, and it’s the “convex
quadratic” generalization of the Lagrangian method. The result is due to Karush, Kuhn, and Tucker,
(dubbed the KKT theorem) but we will state a more specific case that is directly applicable to SVM.

Theorem [Karush 1939, Kuhn-Tucker 1951]: Suppose you have an optimization problem in R" of the
following form:

min f(z), subject to g;(z) <0,i=1,...,m
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Where f is a differentiable function of the input variables x and J1; - - -, 9 are affine (degree-1
polynomials). Suppose z is a local minimum of f. Then there exist constants (called KKT or Lagrange
multipliers) @1, . - ., @m such that the following are true. Note the parenthetical labels contain many
intentionally undefined terms.

1.—=V[f(z) = >, 0;Vgi(z) (gradient of Lagrangian is zero)

2.gi(z) < Oforalli=1,... m (primal constraints are satisfied)
3.a; > 0forallz =1, ..., m (dual constraints are satisfied)
4. 0;9,(z) = Oforall: = 1, ..., m (complementary slackness conditions)

We'll discuss momentarily how to interpret these conditions, but first a few asides. A large chunk of
the work in SVMs is converting the original, geometric problem statement, that of maximizing the
margin of a linear separator, into a form suitable for this theorem. We did that last time
(https://jeremykun.com/2017/06/05/formulating-the-support-vector-machine-optimization-
problem/). However, the conditions of this theorem also provide the structure for a more analytic
algorithm, the Sequential Minimal Optimization algorithm, which allows us to avoid numerical
methods. We'll see how this works explicitly next time when we implement SMO.

You may recall (https://jeremykun.com/2013/11/30/lagrangians-for-the-amnesiac/) that for the basic
Lagrangian, each constraint in the optimization problem corresponds to one Lagrangian multiplier,
and hence one term of the Lagrangian. Here it’s largely the same—each constraint in the SVM
problem (and hence each training point) corresponds to a KKT multiplier —but in addition each KKT
multiplier corresponds to a constraint for a new optimization problem that this theorem implicitly
defines (called the dual problem). So the pseudocode of the Sequential Minimal Optimization
algorithm is to start with some arbitrary separating hyperplane w, and find any training point 7; that
corresponds to a violated constraint. Fix w so it works for Z;, and repeat until you can’t find any more
violated constraints.

Now to interpret those four conditions. The difficulty in this part of the discussion is in the notion of
primal/dual problems. The “original” optimization problem is often called the “primal” problem.
While a “primal problem” can be either a minimization or a maximization (and there is a
corresponding KKT theorem for each) we’ll use the one of the form:

min f(z), subject to g;(z) <0, =1,...,m

Next we define a corresponding “dual” optimization problem, which is a maximization problem
whose objective and constraints are related to the primal in a standard, but tedious-to-write-down
way. In general, this dual maximization problem has the guarantee that its optimal solution (a max) is
a lower bound on the optimal solution for the primal (a min). This can be useful in many settings. In
the most pleasant settings, including SVM, you get an even stronger guarantee, that the

optimal solutions for the primal and dual problems have equal objective value. That is, the bound that
the dual objective provides on the primal optimum is tight. In that case, the primal and dual are two
equivalent perspectives on the same problem. Solving the dual provides a solution to the primal, and
vice versa.

The KKT theorem implicitly defines a dual problem, which can only possibly be clear from the
statement of the theorem if you're intimately familiar with duals and Lagrangians already. This dual
problem has variables & = (a4, ..., @,,), one entry for each constraint of the primal. For KKT, the dual
constraints are simply non-negativity of the variables

a; > 0 for all j
And the objective for the dual is this nasty beast
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d(a) = inf Lz, a)
xr

where L (x, «v) is the generalized Lagrangian (which is simpler in this writeup because the primal has
no equality constraints), defined as:

m

L(z,a) = f(z) + Z a;gi(x)

While a proper discussion of primality and duality could fill a book, we'll have to leave it at that. If
you want to journey deeper into this rabbit hole, these notes
(https://people.eecs.berkeley.edu/~klein/papers/lagrange-multipliers.pdf) give a great introduction
from the perspective of the classical Lagrangian, without any scarring.

But we can begin to see why the KKT conditions are the way they are. The first requires the
generalized Lagrangian has gradient zero. Just like with classical Lagrangians, this means the primal
objective is at a local minimum. The second requires the constraints of the primal problem to be
satisfied. The third does the same for the dual constraints. The fourth is the interesting one, because it
says that at an optimal solution, the primal and dual constraints are intertwined.

4. 0;q;(z) =0foralli =1,..., m (complementary slackness conditions)

More specifically, these “complementary slackness” conditions require that for each i, either the dual
constraint o; > (is actually tight (o; = U), or else the primal constraint 9: is tight. At least one of the
two must be exactly at the limit (equal to zero, not strictly less than). The “product equals zero means
one factor is zero” trick comes in handy here to express an OR, despite haunting generations of
elementary algebra students. In terms of the SVM problem, complementary slackness translates to the
fact that, for the optimal separating hyperplane w, if a data point doesn’t have functional margin
exactly 1, then that data point isn’t a support vector. Indeed, when «; = () we'll see in the next section
how that affects the corresponding training point .

The nitty gritty for SVM

Now that we’ve recast the SVM into a form suitable for the KKT theorem, let's compute the dual and
understand how these dual constraints are related to the optimal solution of the primal SVM
problem.

The primal problem statement is

ulf

1 |
min —
w 2

(w, i) +5) - g > 1
Which we can rewrite as
1—({w,z;)+b)-y; <0
The generalized Lagrangian is
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m

u'||2+Zaj y; - ((w, ;) + b))

u‘||2 + Zﬂj Zajyj (w,z;) = > agy;b
7= g=l

We can compute each component of the gradient ¥V L, indexed by the variables w;, b, and ;. First,
since this simplifies the Lagrangian a bit, we compute 2.

m
== E Y%
i=1

The condition that the gradient is zero implies this entry is zero, i.e. >_;_, ¥;; = 0. In particular, and
this will be a helpful reminder for next post, we could add this constraint to the dual problem
formulation without changing the optimal solution, allowing us to remove the term 6 )" | y;a; from

L(w, b, ar) =

the Lagrangian since it’s zero. We will use this reminder again when we implement the Sequential
Minimal Optimization algorithm next time.

Next, the individual components w; of w.

I m

oL

;— — 'u.‘é —_ (‘ky:r l
ow, E : FH G

i=1

Note that #i; is the i-th component of the j-th training point 7}, since this is the only part of the
expression W ' Z; that involves w;.

Setting all these equal to zero means we require w = 2?:1 a;y;r;. This is interesting! The optimality
criterion, that the gradient of the Lagrangian must be zero, actually shows us how to write the
optimal solution @ in terms of the Lagrange multipliers ¢; and the training data/labels. It also hints at
the fact that, because of this complementary slackness condition, many of the @ will turn out to be
zero, and hence the optimal solution can be written as a sparse sum of the training examples.

And, now that we have written W in terms of the %j, we can eliminate W in the formula for the
Lagrangian and get a dual optimization objective only in terms of the @;. Substituting (and combining
the resulting two double sums whose coefficients are  and —1), we get

E QJ__E E 00 Y Y (T, T4)
=1 g=1

Again foreshadowing, the fact that this form only depends on the inner products of the training
points will allow us to replace the standard (linear) inner product for a nonlinear “inner-product-
like” function, called a kernel, that will allow us to introduce nonlinearity into the decision boundary.

Now back to differentiating the Lagrangian. For the remaining entries of the Lagrangian where the
variable is a KKT multiplier, it coincides with the requirement that the constraints of the primal are
satisfied:

oL

=1 b) <0

()Q i jJ (< > + ) —

Next, the KKT theorem says that one needs to have both feasibility of the dual:
a; > 0 for all j
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And finally the complementary slackness conditions,

a;(1 —y;({w,z;) +b)) =0forall j=1,...,m

To be completely clear, the dual problem for the SVM is just the generalized Lagrangian:

max(inf L(z, «))

subject to the non-negativity constraints:
; 2 0

And the one (superfluous reminder) equality constraint

m

> yia; =0
j=1

All of the equality constraints above (Lagrangian being zero, complementary slackness, and this
reminder constraint) are consequences of the KKT theorem.

At this point, we're ready to derive and implement the Sequential Minimal Optimization Algorithm
and run it on some data. We'll do that next time.

This entry was posted in General. Bookmark the permalink.

2 thoughts on “Duality for the SVM”

Neil Paul

June 24, 2018 at 7:05 am ® Reply
Sir,
You never got around to deriving the SMO. If its not in the works could you at least point me to

some useful resources.
Thank You.

(0]
j2kun

June 24, 2018 at 2:43 pm * Reply
This was a long tale for me, that eventually resulted in me forgoing further progress on this

series for the sake of progress on my book. In the future I will come back to it.

After this post I think you can read the original paper. https://www.microsoft.com/en-
us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-
support-vector-machines/

However, I now wonder if SMO is the best algorithm for SVM. I discovered this in a
roundabout manner. I was playing with some visualizations for the next post in this series,
and I discovered that a mostly random initialization of the learning parameters provided an
already nearly optimal separation. This is essentially the so-called “dual perceptron” and it
informs us that SVM is really just getting an extra percentage or two error improvement to get
from a random solution to optimal. I stumbled upon this fantastic paper of Freund & Schapire
(of boosting fame):
http://cseweb.ucsd.edu/~yfreund/papers/LargeMarginsUsingPerceptron.pdf
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In the paper they start from dual perceptron and discuss how to improve the margin so as to
approach the optimum margin (though not solve for it analytically). It's much easier to
implement, works nearly as well, and also works in a number of alternative computational
settings (harsh memory constraints, streaming input, etc). I was a bit unsure how to proceed
with the series.

Also, the SMO implementation is quite involved (and not precisely specified in the SMO
paper), and my first attempt at an implementation resulted in a number of bugs I've yet to fix
(source code in smo.py here: https://github.com/j2kun/svm-sequential-minimal-
optimization/tree/master/smo). So with that all together, I put the series on hold while I'm
working on higher priority projects.
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